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Abstract-This paper describes a numerical analysis of finite amplitude convection in a two-component 
fluid taking into account thermal diffusion. The present problem is equivalent to the case of thermohaline 
convection with an additional term in the diffusion equation representing the Soret effect. The nonlinear 
equations with free boundary conditions are integrated numerically. Near the neutral stability curve, 
the results of the linear stability theory are recovered for small perturbations. as it should be, but 
finite amplitude convection is the main subject of this paper. Recent published experimental data seem 
to indicate that new physical phenomena are caused by the Soret effect: essentially an hysteresis loop 
was found in Schmidt-~ilverton plots and oscillations were also reported when a two component system 
is heated from below. This paper is an attempt to describe theoretically the experimental facts. During 
the numerical integration of the nonlinear equations, we have found, in many cases, transient oscillations 
in the Nusselt number. These oscillations are induced by the Soret effect, and the frequency, or the 
amplitude can be related to the thermal diffusion coefficient. We give also in this paper an evidence of 
finite amplitude convection, below the critical Rayleigh number (subcritical instabilities) and thus an 

hysteresis loop can be described in the Nusselt-Rayleigh number plane. 

NOMENCLATURE 

A P>4 

B P.4 3 Fourier coefficients; 
C P.4 I 

B, isothermal diffusion coefficient; 
tt’, thermal diffusion coethcient; 

4 depth of the liquid layer; 

9, acceleration due to gravity; 

I.9 length of the cell; 

Ni, mass fraction of component i; 

Ni*> initial mass fraction of component i; 

Nu, Nusselt number; 
n, perturbation of N ; 
Pr, Prandtl number: 

Ra, Rayleigh number; 

RTh, Rayleigh number for the concentration field; 

SC, Schmidt number; 

9, Soret number; 
T, temperature; 

;, 
time; 
period of oscillations; 

Xir space coordinate. 

Greek symbols 

thermal expansion coefficient; 

P-YW~N)T; 

thermal diffusivity; 
kinematic viscosity; 
density; 
temperature perturbation; 
stream function. 

INTRODUCTION 

MEASUREMENTS of thermal diffusion coefficient (also 
called the Soret coefficient; ([1] p. 273) are usually 
conducted with a liquid layer bounded by two rigid 
boundaries and heated from above, and thus the system 

is supposed to be in a state of mechanical equilib- 
rium (convection-free). By monitoring concentration 
changes, it is possible to deduce the Soret coefficient. 
But measurements obtained by slightly different 
methods (e.g. a Clausius column or a flow-cell method) 
did not always agree with the values given by the direct 
method. It is now well known [2] that an instability 
ofthe system is responsible for the discrepancy between 
the data reported in the literature. On the other hand, 
it was suggested by Prof. I. Prigogine that measure- 
ments of Soret coefficients could be performed by 
heating the system from below. Indeed, let us suppose 
that due to the Soret effect, the denser component 
migrates towards the bottom (hot boundary): this is 
thus a stabilizing effect and the increase of the critical 
temperature gradient necessary to induce convection 
should be related to the value of the Soret coefficient. 
Experimental research in this direction was initiated 
by Legros and coworkers [3-53, and was recently used 
by Caldwell [6] in order to determine Soret coefficients 
in electrolyte solutions. 

Thus the Rayleigh-Benard convection in a two- 
component system has received this last decade a great 
deal of attention. The first type of problems investigated 
in this field is the so-called “the~ohaline convection”. 
In the second type of problems, a two-component 
system, initially homogeneous, is subjected to an adverse 
temperature gradient. Thermal diffusion takes place 
and a mass fraction distribution is established in the 
liquid layer. This mass fraction distribution has a pro- 
found influence on the B&nard convection. Of special 
interest is the possible application of this type of 
problem to oceanography (study of convection currents 
in liquids stratified both by temperature and salt, with 
a coupling between the two diffusion phenomena) or 
to crystal growth (especially alloys), from the melt, 
where temperature gradients in a binarv svstem. could 
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inhibit or induce prematurely convection, with or 
without oscillations. 

The works of Veronis, Sani. Nield, Shirtcliffe, Baines, 
Gill, Turner, Hurle, Jakeman, Bdzil, Frisch, Stern and 
many others are reviewed and discussed in a recent 
paper [7]. where all the suitable references can be found. 
We want in this paper to report results of a numerical 
study of finite amplitude convection, coupled with the 
Soret effect in the case of free boundaries. 

Section 2 is devoted to the derivation of the non- 
linear equations and to a summary of the results of 
the linear theory. The numerical results are given in 
Section 3. An hysteresis loop is described in Section 4. 
A comparison with the few existing experimental data 
is given in Section 5. 

2. THE NONLINEAR EQUATIONS 

In writing the nonlinear equations, we have adopted 
the following assumptions, essentially the same as in 
the linear theory : 

1. A Boussinesq fluid. 
2. The Dufour effect is neglected. This is of course 

a quite reasonable assumption for liquid mixtures, 
but becomes inadequate for gases (for more de- 
tails, see [1] p. 279). 

3. The barycentric reference frame is used. 
These conservation equations are in a dimensionless 

form (Z is the vertical and x the horizontal coordinate): 

(a) Conservation of mass 

ScEN1& a($, Nl) 

?t 
‘--------+ 

2(.x, 2) 
V*Nr + YV’T (1) 

(b) Conservation of momentum ($: stream function) 

dT dN1 ~- Ra-+RTi,-- 
3.x dX 

+ PrV2(V2$) (2) 

(c) Conservation of energy 

f+‘ir = pr!!!?!?!+V2T, 
at F(z, xl 

(3) 

The Benard problem including thermal diffusion is 
characterized by 5 dimensionless parameters. The 
notation is that adopted in previous papers by Legros 
and Platten (e.g. [S]). 

1. The usual Rayleigh number Ra = gaATd3/rcv. 
2. The thermal diffusion Rayleigh number RTh = 

gyNfd3/Kv where y = p-‘(ap/aNr)r. 
NT: initial mass fraction of component 1 
(the more dense). 

3. The Soret number Y = (D’/D)/AT. 
D: isothermal diffusion coefficient. 
D’ : thermal diffusion coefficient. 

4. The Prandtl number Pr = V/K. 
5. The Schmidt number SC = v/D. 
The contribution of the conduction regime (linear 

concentration and temperature profiles) is usually sub- 
tracted from equations (l)-(3). 
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Thus we write 

Il/(X,&f) = O+~(x,z,t) 

Ni(x,z, t) = Nr(z)+n(x. r, t) 

T(x. z, t) = T(z) + 9(x. 2, t) 

with T(z) = 1 -z and ri (z) = 1 + Y(z - l/2). 
The final equations to be integrated are 

(4) 

Sc%c =+2.y +v%l+YV*9 (5) 
?t [ ?(x.z) 3x 1 d alCl?v2$) RaE ~- przv2J, =Pr 8(x,z) ax 

+ Rrs E + PrV’(V*$) (6) 

Pr$= Pr[E--g]+pZg (7) 

together with the free boundary conditions 

9 = 0 for z = 0 and z = 1 
a9 
ax = 0 for x = 0 and x = L/d 

a* _=- 
ax 

a* a* a* 
_=- 
BZ (> 

- = 0 for x = 0 and x = L/d 
ax2 az 

2 

rr=$=O for z=O and z=l 

g = 0 for x = 0 and x = L/d. (8) 

It was found that for Y > 0, the principle of exchange 
of stabilities is valid and the critical Rayleigh number 
is given by 

Raiz:;‘) = 
21374 Pr+Sc 
4-RTh9.~. 

Pr 
(9) 

For Y < 0, two cases are possible: 
(i) exchange of stabilities for small 19’1 and equation 

(9) is still valid 
(ii) overstability for 

27~~ Pr(Pr + 1) 
“Y”,- Rrh.‘&Z ’ 

In that case, the critical Rayleigh number increases 
more slowly and is given by 

RatCr,r, _ 27~4 (1 + SC)&+ Pr) 
(over) - -. 

4 SC2 

(10) 
Finally the dimensionless frequency is also known. 

-RT~.Y 9n4 l/2 

” = 
3Pr(Pr 

. 
+ 1) 

-- 1 
4Sc2 

(11) 
Typical values of the period is 0 (10’s) for a liquid 
depth of 0 (1 mm). For more details, see [9]. 

The method of solution of equations (5)-(7) here 
adopted, is the method proposed in earlier work by 
Veronis [lO--121 and by Foster [13]. The stream func- 
tion $, the temperature 9 and mass fraction n are ex- 
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panded in Fourier components with time dependent 
coefficients. By substitution of this representation into 
the nonlinear equations, we get in an absolutely 
standard manner the time evolution of each Fourier 
coefficient. 

The purely algebraic part is rather long, and can be 
found elsewhere 17211. 

The differential equations describing the time evolu- 
tion of the Fourier coefficient, are integrated numeri- 
cally, given a suitable set of initial conditions. This is 
performed by standard numerical methods (Runge- 
Kutta-Hammings). At each time step, the Nusselt 
number Nu is computed. The Nusselt number is defined 
as the ratio of the vertical heat flux to the conductive 
heat flux. In fact we use a horizontally averaged 
Nusselt number, and computed at the lower boundary 
since the heat flux may vary with 2 for time-dependent 
motions. However we can use this definition to describe 
finite amplitude motions and to deduce the period of 
the oscillations. Thus 

Nu = l--71 i qBo.4 
q=1 

(12) 

if we use for 9 the following expansion 

9 = i: i BP,&) cos PA + x sin(qrrz). (13) 
p=o q=1 ( > 

The numerical results to be presented, are obtained 
with a truncated representation. 

We have used three representations: 
(i) P = Q = 2; (ii) P = Q = 4; (iii) P = Q = 6. 

The number of Fourier coefficients to be used in 
order to obtain accurate Nusselt numbers has been 
discussed previously [lo-121. The results which are 
physically relevant, are those which do not change in 
any significant way when the truncation level in the 
Fourier representation is increased. It was verihed in 
a few numerical experiments that the difference in the 
numerical results concerning the mean value of the 
Nusselt number never exceeds 1% between the rep 
resentation “P = Q = 4” and “P = Q = 6”. This is due 
to the fact that we are interested in small Rayleigh 
numbers, in low intensity convection (usually Ra < 
2RPt) and thus the few first modes are sufficient. 
Some results presented in this paper are obtained with 
P = Q = 2, mainly in order to reduce the computer 
time. This produces a maximum error of 15% on the 
Nusselt number. However, the aim of this paper is only 
to provide a qualitative study of oscillations and of the 
hysteresis loop. Moreover, accurate Nusselt numbers 
for the case of two free boundaries, cannot be checked 
by experiment. 

Before proceeding with the numerical integration of 
the differential equations for the Fourier coefficients 
of the stream function I++, the temperature 9 and the 
mass fraction n (called respectively A,,,, BP,, and C,,,), 
a suitable set of initial conditions must be specified. 
The values 

Ap.9 = LG., = Cr., = 0 \dp> q 

correspond to the state of rest. We want, in general, 

to perturb slightly the state of rest and to follow the 
time evolution of the perturbations. Therefore we have 
generally adopted the following initial conditions 

A,,, = C,,, = 0 VPP, q 
and JB,,,j = 10m6 for p = 0,l and q = 1,2 

i.e. an “infinitesimal” perturbation. The contribution 
of this initial perturbation to the Nusselt number 
(initially equal to 1) is less than 10m6! The parameters 
Pr, RTI, and SC were kept constant and equal to 
Pr = 10; SC = 1000; RTh = 40000. These values are of 
the same order of magnitude as for water-alcohol 
systems (e.g. the system 90 wt ‘4 water - 10 wt y0 iso- 
propanol studied experimentally by the authors [9]). 
Finally, we have adopted L/d = 1.4, i.e. one half of 
the critical wavelength. We are thus studying above the 
critical point one half of a Benard cell having the same 
size as at the critical point. Any other ratio length to 
depth gives a lower Nusselt number. We have verified 
that the results of Foster [13] concerning the effect of 
the ratio L/d are unaffected by thermal diffusion. 

The two remaining parameters Ra and Y are varied 
in the subsequent numerical experiments. 

Finally, we would like to mention that all the cal- 
culations were done in double precision on a B5500 
computer or on a CDC 6400. 

3. NUMERICAL RESULTS 

(a) Results near the neutral stability curve for Y < 0 
For Y = - 5. 10m3, the critical Rayleigh number is 

from equation (10): Ra[~~$ = 846.557. The first run 
was performed with Ra = 860, i.e. near the’ neutral 
stability curve. At each time step (At = 10m2) all the 
Fourier coefficients and the Nusselt number are com- 
puted. 

As predicted by the linear theory the Nusselt number 
increases with time (Ra > Ram” * instability) and 
oscillations of increasing amplitude are observed (over- 
stability). The following experiments were made near 
the neutral stability curve, namely 

1. Y= -10-5 Ra = 660 

2. Y= -10-S Ra = 610 
-+ (Rar;;‘:, = 665.1) 

3. Y= -10-4 Ra = 660 
4. Y= -10-4 Ra = 675 1 -+ (Ra;;:‘:, = 668.375) 

5. Y= -10-3 Ra = 695 
-1O-3 -, = 6. Y= Ra = 705 (Ra%r 701.103) 

7. Y = - 5. 10m3 Ra = 860 + (Ra$ = 846.557). 

In runs (l), (3) and (5), i.e. below the critical point, the 
initial small perturbations die out. On the contrary, 
in runs (2), (4), (6) and (7), i.e. above the critical point, 
the initial perturbations are amplified; the Nusselt 
number grows with time and oscillates. The general 
behaviour in view of the seven runs, is indeed the right 
one. Moreover, the dimensionless period of the oscil- 
lations of the Nusselt number, can be deduced from 
the computer output. For example, for run (7) we have 
found for the period T = 4.015. In fact the period of 
oscillations of the stream function at each point is twice 
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the period of osnllatrons of Nu. This can be easily 
followed in the numerical results. The velocity com- 
ponents change sign with time. The mimmum in $J (a 
negative value, thus a maximum in /+I) as well as a 
maximum m JI (positive), correspond both to a maxi- 
mum in the Nusselt number and this is of course easily 
understood. When $ passes through the value zero the 
Nusselt number is nearly equal to unity. Thus from 
the computer output the period of oscillations of rj IS 
T = 8.03. From equation (11). we find T = 2x/a, = 8.07 
and this is a surprisingly good agreement. Table 1 sum- 
marizes the period of oscillations of the Nusselt number 

2 1945 
t’ 

L 9556 

l.0000 
0 4 6 12 16 20 24 26 32 36 40 

Table 1 Ttme 

.Y 

-10-S 
-10-j 
-10-j 
-5.10-3 

TNl< 

108.5 
‘8.96 
8.97 
4.015 

T, Equation (I 1) 

217 180.47 
51.92 57.07 
17.94 18.05 
8.03 8.07 

FIG. 1. Time variatton of the Nusseh number; Ra:2630; 
Soret number is -lo-‘. In all the subsequent figures of 
this type, the points (@) correspond to the computer output. 
Solid and dotted lines are added by the authors. The values 
of the Nusselt number on the y-axis are due to the fact that 
the computer takes the minimum and the maximum value 
of Nu, and divides this interval in ten parts. The figures are 

thus drawn by the computer. 

TNu (column 2), of $, called T, (column 3) and the 
value predicted by the linear theory (equation 11). 
The poor agreement at Y = - 10m5 is due to the fact 
that for 0 < t < 250 we have only three maxima in 
Nu to determine TNu (t = 250 is the final integration 
time with a time step of lo- 2). 

t 

We conclude thus that the linear stability theory is 
verified in these nonlinear computer experiments. 

The numerical results of this section [Section 3(a)] 
were obtained with P = Q = 2, and are near the neutral 
stability curve in complete agreement with the linear 
theory and there is thus no need to improve any more 
these results using a higher representation. 

. 
2.6976 - 

2.6316 - ’ 
2.7657 - i 

i 

(b) Results at Y = - 10e2 and Ra = 2630 or 1800 
The critical Raylergh number is 1028.35 and the 

numerical results should not be compared with the 
linear theory. For the same initial perturbation, Fig. 1 
shows the Nusselt number vs time for 0 < t < 40. 

FIG. 2. Time variation of the Nusselt number (10 < t < 20); 
Ra = 2630: .Y = -lo-*. 

There is a very rapid growth of the Nusselt number, 
but as soon as the Nusselt number has reached its 
final mean value, oscillations start around this mean 
value. The period of oscillations is 2 1.5-1.6 and 
cannot be compared with the value deduced from the 
linear theory (T = 5.7). This is of course obvious, far 
from the critical point. 

In contradistinction with the numerical results of 
Section 3(a) the stream function Cc, oscillates with 
exactly the same period as Nu, and never changes sign. 
There is thus no reversal of the velocity components 
and thus the minimum of Nu during an oscillation is 
never 1. The final mean value of Nu is 3.04. i.e. exactly 
the same value that we have obtained in a preliminary 
run (Y = 0), for the usual Benard problem, at the same 
Rayleigh number. where of course no oscillations are 
seen. This is not surprising as we know that, for the 
case of two free boundaries, the number of convective 
cells is not affected by thermai diffusion. 

Beats are observed. It seems that two frequencies 

are present. This is more evident on Fig. 2 where the 
time scale is extended and the number of points twice 
that of Fig. 1 for the same time interval. In fact, with 
56 Fourier coefficients, 4 coefficients contribute to the 
value of Nu (Be,, BoZ, Be3, B&. Two of them are less 
amplified (BeI and I?& and contribute for a total 
mount of less than 0.1% to the Nusselt number. In 
order to save processor time, the non contributing 
coefficients are usually neglected and put equal to zero 
in the integration process. The two remaining coef- 
ficients (Boz and Bo4) do not oscillate each with a single 
but different frequency, as we first expected but 
beats are observed in each Fourier coefficient. At 
Ra = 1800, the Nusselt number (approximated by 
Nu = I- 2 n. Bo2 - 4. K. B& presents small irregu- 
larities at t = 32, t CY 37.5 and t N 43.5 (see arrows in 
Fig. 3) corresponding to a progressive growth of a new 
peak, fully developed for large time. For the next higher 
approximation fP = Q = 6), among the 120 co&Gents, 
60 are not amplified to a significant level (p+ 4 odd) 

Ra a2630 
y.-001 



Bt?nard convection with Soret effect 

b 

117 

2.6923 - 

30.0 31.5 33.0 34.5 36.0 31.5 33.0 40.5 42.0 435 430 

FIG. 3. Time variation of the Nusselt number (30 < t 6 45); 
Ra = 1800; Y = - W2. 

and are neglected. Three Fourier coefhcients contribute 
to the Nusselt number (B02, Bo4 and Bo6). The be- 
haviour of Nu(t) is qualitatively the same as in Figs. 
1-3, and no new features are observed. Thus we believe 
really that only two frequencies are present. At the 
critical point however, only one frequency is present. 
We believe that the two frequencies observed at 
Ra = 1800, could be called “the beginning of tur- 
bulence”. 

(c) Results at 9’ = -lo-’ and Ra = 1100 
This experiment was chosen because the behaviour 

of Nu for “small” time (0 < t 6 160) is quite similar to 
that described in Section 3(a). At t = 200, the nonlinear 
terms become sufficiently important and the behaviour 
of Nu changes radically. 

The period of oscillations of Nu is T = 2.84. Exactly 
as in Section 3(a), $ changes sign and oscillates with 
a period twice that of Nu. Thus T, = 5.68. The period 
calculated from equation (11) is T, = 5.71, thus once 
more a surprisingly good agreement. The period does 
not change for t < 160. For t > 160, the nonlinear 
terms become more and more important: the mean 
value of Nu does no longer increase exponentially as 
in Fig. 4. but much more slowly. At the same time, 
there is a modification in the period of the oscillations. 
For 250 < t < 260, the minimum value of Nu is always 
of the order of 1, and exactly as for 0 < t < 160, J/ 
changes sign and passes through the value 0 when 
Nu = 1. The Nusselt number is equal to 1 for the last 
time at t 2: 258. Indeed, during the next oscillation, 
Nu drops only to a value close to 1.16 (at t N 261.7). 
The next minima (at t = 265.8 and 269.6) are at higher 
values. At the same time, the successive maxima in Nu 
decrease. This is shown on Fig. 5. 

Figure 4 shows Nu(t) for 20 < t < 40. As predicted t 
20867 - 

19944 - 

t9021- 

1SoS7- 

, 7174 - 

mom t h 

1.0000 

loo00 
t 

RO~IIOO 

sp.-0.01 

: 

r? 

l.0000 

20 22 24 26 28 30 32 34 36 38 40 

Fto.4. Growth of the initial perturbation in the Nusselt 
number. Ra = 1100; Y = - 10A2. 

by the linear theory, instability arises as oscillations 
of increasing amplitude. The behaviour of Nu does 
not change for t < 160. Figure 4 is reproduced for 
40 < t C 60,60 < t < 80, etc.. . . . The maximum value 
of Nu during each time interval increases and is given 
in Table 2. In view of the smallness of the maximum 

Table 2 

Time interval Max. of Nu 

20 < t < 40 1.000000001 
40 < t < 60 1.000000024 
60 < t < 80 1.000000429 
80<r<lOO 1.~~78~ 

100 < t c 120 1.000 142033 
120 < t c 140 1.002 569 826 
140 <t < 160 1.042 148 639 

value of Nu for t < 100, the ordinate scale in Fig. 4 
is correctly labelled, the variation of Nw being less 
than 0.0001 ! 

260 261 262 263 264 265 266 267 268 269 270 

Tlmc 

FIG, 5. Time variation of the Nusselt number (260 < t Q 
270); Ra=1100;.48= -10-t. 

What is now remarkable, is that the stream function 
does no longer change sign and now oscillates with the 
same period as the Nusselt number. There is thus an 
acceleration of the convective motion, followed by a 
retardation of this motion, but without inversion of 
the velocity components. For t > 270, the amplitude 
of the oscillations decreases. At r --* a3 the amplitude of 
the oscillations reaches zero. 
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For this Ra number, there exists thus three domains: 
(i) t < 160: according to the linear theory. insta- 

bility arises as oscillations of increasing ampli- 
tude and the period is correctly predicted by 
equation (11). The stream function changes sign 
and Nu oscillates between 1 and a value greater 
than 1. 

(ii) 160 < t < 260: the nonlinear terms become im- 
portant, implying a modification of the period 
of oscillations. The stream function still changes 

sign. 
(iii) t > 260: the Nusselt number oscillates between 

two values greater than 1 and there is no longer 
a change of sign in the stream function. The 
amplitude of the oscillations decreases continu- 

ously and the period cannot be predicted by 
equation (1 l), i.e. by the linear theory. 

(d) Results for positice Soret numbers at Ra = RacrBt 
Different runs were performed near the neutral 

stability curve. In contradistinction with the case 
Y < 0, the growth of the initial perturbation above the 

critical point, is monotonous in accordance with the 
fact that, from the linear theory, the principle of 
stability is valid. 

(e) Results at .Y = + 1.2 x 1O-4 and Ra >> Rat::) 
The first run is performed with R = 850. The critical 

Rayleigh number is 172.7 and thus Ra = 5 x Raf$,. 
For 0 < t < 34 we observe a monotonous growth of 
the initial perturbation according to the linear theory. 
As soon as the nonlinear terms are dominant (t > 34) 
oscillations start. This was unexpected but there is no 
reason to extrapolate the principle of exchange of 
stability (no oscillations in the initial growth) to the 
final finite amplitude motion. The period of oscillation 
is, in reduced units 4.7 and cannot be compared with 
the value deduced from the linear theory. 

The second run is performed with R = 2630 2 15 x 
Raf$ and shows the same behaviour. This is repro- 

duced on Fig. 6 for 0 < t < 10. It seems that NM is a 

* 9594 t 

Ra -2630 
~~+0.00012 

:_E ( ( , , ( , , , ( ( 
, 0000 . . . . . . . . . . . . . . . . .._.._ .-.I’ 

0 I 2 3 4 5 6 7 9 9 10 

Tame 

FIG. 6. Time vanation of the Nusselt number (0 < t < 10): 
Ra = 2630; Y = + 1.2 x 10-4. 

constant for t > 6.2, but when the scale is amplified 
(Fig. 7: t > 10) very regular oscillations are observed; 

FIG. 7. Time variation of the Nusselt number (10 < I < 20); 
Ra = 2630: Y = + 1.2 x lo-.+. 

moreover, the amplitude decreases slowly with time. 

TNu is now 1.5 in reduced units. 

(f) Results at Ra = 2630 and difSerent Y 
The following runs were made 

1. Y=O usual Btnard problem. 

2. Y = + 1.2 x 10-4 

3. Y = -1.2 x 10-4 
4. Y= +5 x 10-4 

i 

far from the neutral 
5. <Y = -5 x 10-4 stability curve. 
6. Y= +10-2 
7. .y’= -10-2 

8. Y=-5x10-2 -+ close to the neutral 
stability curve. 

9. y’= -6 x 1O-2 -+ below the neutral 
stability curve. 

In run 1, no oscillations are seen. In runs 2-7, we are 
far from the neutral stability curve. Oscillations are 
observed both for positive and negative Soret numbers. 

The period is absolutely not predicted by the linear 
theory and in the six runs is always equal to 1.5 reduced 
units and thus does not depend on the Soret number. 
On the contrary near the neutral stability curve the 

period is given by T+ l/(lY/)*(Y < 0) according to 
the linear stability theory. However, the amplitude is 
influenced by the Soret number. We measured the 

greatest value of the amplitude after time t = 10. The 
situation is summarized in Table 3. We see that the 
amplitude is roughly proportional to 191. 

Table 3 

Maximum amplitude in Nu of 
.cy TN. the oscillations for t z 10 

-.-_-. 

0 0 0 
+ 1.2 x 10-J 1.5 0.0061 
-1.2 x 1o-4 1.5 0.0060 
+5 x 10-b 1.5 0.0251 
-5 x 1o-4 1.5 0.0256 
+10-2 1.5 0.4959 
- 1o-2 1.5 0.538 1 
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In run 8, we are “not too far” from the neutral 
stability curve (the Soret number at which RuF&, = 
2630 is -5.4 x lo-‘, whereas for Y = -5. lo-’ we 
find Ra&, = 2483). Integration was performed only 
for t < 20. We do not possess the new state, but for 
t < 20, the behaviour is completely identical to Fig. 4: 
instability arises as oscillations of increasing ampli- 
tude, with a period equal to TNU = 1.26 or T, = 2.52. 
The period deduced from equation (11) is 2.55, thus 
in complete agreement with our observation. In run 9, 
we are below the critical point. The initial perturbation 
decreases with oscillations, in accordance with the 
overstability of the system for Y < 0. The behaviour 
of Nu is shown on Fig. 8. The Nusselt number reaches 
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FIG. 8. Decay of the initial perturbation of the Nusselt 
number: Ra = 2630; Y = -lo-‘. 

the value 1.000000 by oscillations of decreasing 
amplitude. 

(g) Discussion ofthe results ofSection 3 
The results that we have obtained in this paragraph 

could be summarized as follows : 
(i) The results of the linear stability theory are 

recovered in these nonlinear computer experiments 
provided that the initial perturbation is small and that 
the Rayleigh number is close to the critical Rayleigb 
number. Both the “principle of exchange of stability” 
and “overstability” are observed in their particular 
range of validity: above (below) the critical point 
oscillations of increasing (decreasing) amplitude for 
Y < 0, but monotonous increase (decrease) in Nu for 
Y > 0. When oscillations are present their period is 
correctly predicted by the linear theory. 

(ii) Far from the critical point, transient oscillations 
with more than one frequency are observed. For a 
sufficiently long time, the system reaches a final steady 
state, and the mean value of the Nusselt number is 
exactly the same as for the usual Benard problem. 
Figure 9 shows the differences in Schmidt-Milverton 
plots between a pure liquid and a liquid mixture with 
a negative Soret coefficient (9 < 0 * D’/D -c 0). These 
differences, as well as the experimental observations, 
were already discussed elsewhere [9,15], but let us 
recall that very regular oscillations were observed in 
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FIG. 9. Schmidt-Milverton plots for pure liquids (a) and 
mixtures with negative Soret coefficients (b). W is the heat 

power supplied to the BBnard apparatus. 

the part of the curve with a negative slope Cpart (c)l, 
i.e. below the critical temperature gradient. Far above 
the critical temperature gradient, e.g. AT = AT+, there 
is only one state, whatever the initial conditions are, 
namely point Sq, and this state is probably a steady 
state. Starting from the state of rest, Hurle and Jakeman 
[16,17] have shown experimentally that transient 
oscillations are observed when the heating power is 
increased, provided that the Rayleigh number is pre- 
vented to drop, and that finally the system reaches a 
final steady state. This is in fact exactly what we have 
observed and described in Sections 3(b) and (c). 
Finally, far from the critical point, the period of 
oscillations cannot be predicted by the linear theory, 
but, at a given Rayleigh number, their amplitude, is 
proportional to 1YJ. 

(iii) Below the critical point, say AT = AT-, three 
states are possible, namely Sr, S1 and S3. St is the 
state of rest and Sz and S3 convective states. below the 
critical point AT”“. The very nice oscillations reported 
previously [9] were observed below ATC”’ but with a 
heating power W close to the critical heating power. 
Wb: the state S2 is probably a finite amplitude oscillatory 
state. At a given Rayleigb number below RP’, the 
state reached by the system will depend on the initial 
conditions. This will be examined in more detail in the 
next paragraph. 

4 AN HYSTERESIS LOOP 

Analytical calculations, related to a severe truncated 
development using only five coefficients [14] show the 
existence of stable steady convective states below the 
critical point and allow the description of an hysteresis 
loop in the Nusselt-Rayleigh plane. With this minimal 
representation for the velocity, temperature and con- 
centration field, analytical calculations were made in 
order to find all the possible steady states. We have 
shown that two stable steady states were indeed 
possible below the critical point: the state of rest (say 
St on Fig. 9, part b) and a convective steady state 
(interpreted as the state S3 on Fig. 9). In order to reach 
this state S3, special initial conditions must be specified, 
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namely initial conditions correspondmg to a convective Table 4. the mean value of the Nusselt number being 
state, say S+ 1.545. Thus the existence of an hysteresis loop is firmly 

Of course, as already stated. we have to attach a established and is by no means linked to the number of 
physical meaning to numericat results which do not Fourier coefficient. i.e. to a too smaii representation. 
change in any significant way when the truncation The situation is summarized on Fig. 10. 
level in the Fourier representation is increased. Numeri- 
cal calculations, involvmg 16 coefficients (P = Q = 2) 
will not be reproduced here, because they produce 5. COMPARISON WITH EXPERIMENTS 

numerical results identical to those obtained analyti- First of all, we would like to emphasize that a com- 
cafly, using the severe truncated development with only pleteexperimental study of the action of the Soret effect 
five coefficients. The particular good agreement be- on natural convection is missing. We have no indication 
tween the results obtained with five and with 16 Fourier on the flow patterns in the nonlinear regian, far from 
coefficients. is due to the fact that among the 16 coef- the critical point, and even, we do not possess the 
ficients, those with (p + 4) odd are not amplified. More- flow patterns near the critical point. The only experi- 
over, among the remaining eight coefficients which are mental data available today are Schmidt-Milverton 
amplified, three are always much smaller than the five plots [3-S, 9. 16. 18. 191. The am of these experiments 
coefficients considered in the truncated expansion. was to verify the variation of the critical Rayleigh 

The numerical experiments that we have performed number and to compare with the lineur theory but 
(with P = Q = 4) are summarized in Table 4. by no means to know the flow structure. There 1s even 

Table 4. Hysteresis loop with 56 Fourxer coeficlents (,Y’ = - IO-‘; R&G& = 1028.35) 

Run No. Ra Initial state (t = 0) Mean value of Nzt during oscillations 
___~__ _..____ __._~. ~-_ -._ __~_~ ~. ---~ 

1 Rae”‘+ 1000 = 2028.35 Rest 2.70 
2 1800 Run (1) at t = 10: Nu(0) = 2.52 2.55 
3 1800 Rest 2.55 
4 1500 Run (1) at t = 10 2.31 
5 1200 Run(l)att=lO 1.97 
6 1200 Rest 1.98 
7 1100 Run(l)atr~lO 1.85 
a Rae” = 1028.35 Run(I)att=30 1.73 
9 1000 Run (5) at r = 30 1.71 

10 RaCT” - 50 = 978.35 Run(l t = 30 1.67 
11 RaC”’ - 100 = 928.35 Run (1) at t = 30 1.55 
12 913.85 Run(l t = 10 1.00 

Let us now comment on some runs. Runs (2) and f3) 
show that, beyond the critical point, there is only one 
state corresponding to Nu N 2.55, starting with the 
state of rest (run 3), or with a convective state. In 
col. 3 of Table 4, “Rest” means “At I = 0 all the 
Fourier coefficients are equal to zero except the initial 
perturbation given by ]B,,,j = lOme”, whereas “Run (a) 
at t = r” means “At t = 0, all the Fourier coefficients 
are equal to the values obtained in run number (a) at 
time t = r”, In run 9, we are below the critical Rayleigh 
number, and we know from the linear theory that if 
we start with the state of rest, slightly perturbed. the 
initial perturbation dies out and that the Nusselt num- 
ber reaches the final value 1, with osciIIations of 
decreasing amplitude (for the general behaviour see 
Fig. 8). However, if we start with an initial convective 
state, even below the critical point, the system does 
not return to the state of rest and the Nusselt number 
reaches a final mean value of 1.71. The same experi- 
ments are repeated in runs 10 and ll. From runs (11) 
and (12) we deduce that the Rayleigh number at which 
finite amplitude instability may exist is 913 < Raf, < 
928. thus a larger value than that obtained with 16 or 
five coefficients. Nevertheless the hysteresis loop is still 
present. A supplementary run with 120 coefficients at 
Ra = 928.35 shows the same behaviour as run 11 of 

no information on the size of the convective cells com- 
pared with the case of a pure liquid. We would like 
to remember that the linear theory predicts that for 
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FIG. IO. Hysteresis loop in the Nusselt Rayieigh plane. 

Y > 0, kc”’ --P 0 or Ic”’ J m, where i”” is the critical 
wavelength linked to the size of the convective cells. 
In some sense, there would be only one convection ceil 
for Y > 0. occupying the whole Soret apparatus and 
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this unique convection cell has no appreciable effect 
on the total heat transfer. This would in some sense 
explain why Schmidt-Milverton plots at Y > 0 show 
the same behaviour as for a pure liquid. Recently 
Sparasci and Tyrell[20] have obtained an experimental 
evidence for the existence of a critical limit for the 
onset of very slow convective motion at Y > 0, far 
below that associated with the normal Benard motion. 
They used an optical system instead of simpIy measur- 
ing an increased heat flow. 

The linear theory shows that, in some cases, over- 
stability prevails at the critical point. As a consequence, 
the above mentioned researches have tried to detect 
os~llations near the critical point, at least in the tem- 
perature field, by looking at the response of a tempera- 
ture probe (thermocouple, NTC resistor . . .) fixed in a 
given position in the liquid layer. There still exists a 
controversy concerning the origin of the observed 
oscillations [17, 151. Nevertheless we believe that the 
observed os~llations are really induced by thermal 
diffusion and our recent paper [9] shows qualitative 
agreement between experiments and theory as far as 
oscillations near the critical point are concerned. 
When the heating power is raised in Schmidt-Milverton 
plots, the thermocouple response becomes more ir- 
regular and finally oscillations seem to disappear (see 
e.g. Fig. 2, part C and D of [9]). This could be 
linked to the transient nature of the oscillations re- 
ported in this paper. Referring once more to Fig. 9, 
if the state Sq is really a steady state and if over- 
stability prevails at the critical point B it is quite 
natural to observe transient oscillations {both in lab- 
oratory experiments and in numerical experiments) 
during the evolution of the system from the state of 
rest to the convection steady state Sq. On the other 
hand. we were not able to reproduce in our numerical 
experiments sustained oscillations above the critical 
point. Let us recall that stable regular oscillations were 
only observed below the critical point (state $2, Fig. 9) 
and that the experiment is conducted such that, being 
initially at the critical point B, one can evolve to the 
same Rayleigh number (AT-) by two ways: by lower- 
ing the heat power or by increasing the heat power, 
and thus one can reach state Si or S2 exactly as we 
like. On the contrary, in numerical experiments, the 
only parameter that we can vary is the Rayleigh num- 
ber, and below the critical Rayleigh number the state 
reached by the system (S,, Sz or $3) depends on the 
initial conditions, in some sense, depends on a certain 
preparation of the system. We were not able to prepare 
initially the system such as to reproduce the state SZ. 
It seems indeed difficult to find and to prescribe to all 
the Fourier coefficients the correct initial values such 
that each Fourier coefficient begins to oscillate with 
time. 

The interpretation of the hysteresis loop described 
by our computer experiments is much more easy. In 
fact if the Rayleigh number is taken in numerical 
experiments as the independent variable, instead of the 
dependent variable as usually done in Schmidt- 
Milverton plots, the part of the curve in Fig. 9 with a 

negative slope (part C) cannot be reproduced by com- 
puter experiments, but only parts (a) and (b). Starting 
with the state of rest and, by increasing Ra, part (a) 
of the curve is retraced. If Ra > RaCr” (AT > AP”‘, e.g. 
AT = AT+) there is a sudden jump to part (b) e.g. 
point &, corresponding to an increase in the Nusselt 
number. Now by decreasing Ra, part (b) of the curve 
is retraced and even below Rae”‘, stable convective 
states are possible. At point C’, if we further decrease 
Ra, there is a new jump back to curve (a) corresponding 
to Nu = 1 (state of rest). This is in fact what is described 
on Fig. RI. A more qualitative comparison can be made. 
Referring to Fig. 10 of this paper we find 

RaCXH 1028.35 
-__ N -- ‘u 1.123. 
Ram,” 915 

(14) 

From Schmidt-Milverton plots on the system water- 
isopropanol (Fig. 3 of [9]) the ratio of the two tem- 
perature gradients at which the system leaves the state 
of rest by increasing the heat power, or returns back 
to the state of rest by decreasing the heat power, i.e. 
the ratio of the two AT’s corresponding to point A and 
point C of Fig. 3 of [9], is 5.45”C/4.75”C = 1.147. Com- 
parison of this result with (14) shows that the order 
of magnitude of the hysteresis loop is preserved, even 
if in equation (14) the numerical values of the dimen- 
sionless parameters (Pr, SC,. . .) are not exactly those 
corresponding to the experimental situation. 

Finally. we believe, in order to make further progress 
in this problem, that a complete experimental study is 
needed. together with the solution for rigid boundaries. 
However, this second part is in progress, using finite 
differences. 
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CONVECTION BIDIMENSIONNELLE NON LINEAIRE DE BENARD 
AVEC EFFET SORET: FRONTIERES LIBRES 

R&urn&On dkcrit une analyse numirique de la convectlon d’amplitude finie dans un fluide g deux 
composants, en prenant en compte la diffusion thermique. Le probltme consid& est kquivalent au cas 
de la convection thermohaline avec un terme additionnel dans l’tquation de diffusion, pour l’effet Soret. 
On integre numeriquement les tquations non lint?alres avec des conditions de frontitre libre. Prts de la 
courbe de stabiliti: neutre, les risultats de la thtorie 1inCalre de la stabilitC sont retrouvts pour les 
petites perturbations, mais on s’mtCresse principalement aux amplitudes finies. Des resultats expkri- 
mentaux, rircemment publits, semblent montrer que des phenomtnes nouveaux sont causkes par l’effet 
Soret: essentiellement une boucle d’hystCrCsis avait Ctt trouvte dans les diagrammes Schmidt-Milverton 
et des oscillations avaient &te signalCes lorsque le systbme binaire est chauffk par le bas. Cette &ude 
tente de dkcrire thtoriquement les faits exerimentaux. Durant l’intigration numtrique des iquations 
non linkaires, nous avons trouvi dans de nombreux cas des oscillations transitoires du nombre de 
Nusselt. Ces oscillations sont induites par I’effet Soret et la frequence, ou I’amplitude, peut &tre reliBe 
au coefficient de diffusion thermique. On rtv&le l’existence d’une convection g l’amplitude finie au dessous 
du nombre de Rayleigh critique (instabilitks sous-critiques) et qu’une boucle d’hystCrCsis peut itre d&rite 

dans le plan des nombres de Nusselt et de Rayleigh. 

NICHT-LINEARE, ZWEIDIMENSIONALE BENARD-KONVEKTION 
MIT SORET-EFFEKT: FREIE GRENZEN 

Zusammenfassung-Diese Arbeit beschreibt eme numerische Analyse der Konvektion endlicher Amplitude 
in einem Zweikomponentenfluid unter Beriicksichtigung der Thermodiffusion. Das vorliegende Problem 
entspricht dem Fall der thermohalinen Konvektion, wobei in der Diffusionsgleichung ein zusltzlicher 
Therm fiir den Soret-Effekt eingefiihrt werden mul3. Die nicht-linearen Gleichungen mit freien 
Randbedingungen werden numerisch gelb;st. In der Nshe der neutralen Stabilitatskurve wurden, wie zu 
erwarten war, die Ergebnisse der linearen Stabilitltstheorie fiir kleine StGrungen bestitigt; das Haupt- 
augenmerk dieser Arbeit liegt jedoch auf der Konvektion endlicher Amplitude. Kiirzlich verijffentlichte 
Versuchsergebnisse scheinen neue, durch den Soret-Effekt hervorgerufene physikalische Phtiomene 
anzudeuten: vor allem wurde m den Schmidt-Milverton-Darstelhmgen eine Hysteresisschleife entdeckt 
und es wurde such iiber Oszillationen m von unten beheizten Zweikomponentensystemen berichtet. Die 
vorliegende Arbeit versucht, die experimentellen Befunde theoretisch zu beschreiben. Bei der numerischen 
LGsung der nicht-linearen Gleichungen fanden wir in vielen FLllen ubergangsschwingungen in der 
Nusselt-Zahl. Diese Schwingungen werden durch den Soret-Effekt hervorgerufen und die Frequenz bzw. 
die Amplitude kann mit dem Thermodiffusionskoeffizienten in Verbindung gebracht werden. Es wird 
auBe.rdem ein Nachweis der Konvektion endlicher Amplitude bei subkritischen Rayleigh-Zahlen 
(subkritische Instabilititen) gegeben; damit kann eine Hysteresisschleife im Nusselt-Rayleigh-Diagramm 

beschrieben werden. 

ABYXMEPHAII KOHBEKI@ix BEHAPA C YqETOM 3@0EKTA 
COPE B HEJIHHEBHOM I-IP&ifinH~EHWH. CBOBOAHbIE I-PAHMUbI 
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k,E,OW,I‘S, - npSU,O~TC,, WV2IeHHbIe p3yJIbTaTbl lT0 KOHBeKIiUIi KOHe’IHOZi aMllJIHTyD.1 B nByX- 

KOMlTOHeHTHOii XCHLIKOCTA C yreTOM TepMOAH@$y3IUi. &lHIias 3wa9a aHa.norNyHa Tanare nn# cnyriarr 
TepMOXaJIHHHOii KOliWKLWi, TOJIbKO B ypaBHeH&ie PH+$y3HH no6awIeH YJIeH, y’IHTblBalomH% WKT 

Cope. HemmeiW,Ie ypaBHeEmJI co CBo6OmibIMJi rpaIiKYHblMH yCIIOBHSIMH HHTerpHpOBaJIHCb YHCJIeH- 

HO. B6.W3H @HBOt IietiTpaiTbHOii yCTOlf’I%WCTIi p3yZbTaTbl JIIiIiehIO2f TeOpHH CIIpaBeNIHBbI ,IUIX 

cnyran ae6oJIbmHx B03Mymemi& o~Ha1c0, 0cIioBHoe Bmihfamfe yneneao wccnenoeaHm0 KOI~B~KI.~HH 

KOHeYHOtt ah4LUIHTyYAbI. nOUIeLWHe OIIy6JIHICOBaHHbIe 3KCIIepHMeHTaiTbHbIe LTaHHbIe l-IOKa3bIBaH)T, 

YTO 3@&KT tip BbI3bIBaeT HOBbIe &I3APeCKWe RBJIeHHR: B ‘IaCTIiOCTH, Ha rpa&IKaX mMW,Ta- 

h&.rIbBepTOHa 06Hapy;sceHa IIeTIIK rHcTepe3Iica, a TaKzKe KOIIe6aTeJIbHaK IieyCTOihkiBoCTb KoHB~KMB- 

HOrO JWi?KeHESI ITpSf HarpeBe ~ByXKOMIIOHeHTHOti CHCTeMbI CIiHJy. AaHHaK CTaTbR KBJllleTCa IIOlIbIT- 

KOfi , TeopeTHWCKOrO OI’,HCaHHII 3KCIlepSiMeWTaJIbHbIX JGUIHbIX. nPH ‘IHCJIeHHOM HHTerpHpOBaHHIi 

HeJIIiHeihibIX ypaBHeHH# BO MHOrHX CJIy’IanX Ha6nronamicb H3MeHeHWI BO BpeMeHH ‘IEIWa Hyc- 
CeJV,Ta. %H EI3MeHeHHII MOryT 6bITb CB113aHbI C KO3@&WUeHTOM TepMOAH+~y3HH. npIiBOJUITClr 

Tame ,IJaHHbIe 0 KOHBeKUHll KOHe’IHOfi aMILWTyAb1 aTIIl WCJIa PeJIeSI, MeHbme KpHTH’IeCKOrO (IlO& 

KpIiTHVeCKaSI HeyCTOfiWBOCTb), Ii, TaKUM o6pa3oM, IIeTJlH3 rKCTepe3IiCa MOXWO OmiCaTb C IIOMOmblO 

g&icen HyccenbTa a Penea. 


