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Abstract—This paper describes a numerical analysis of finite amplitude convection in a two-component
fluid taking into account thermal diffusion. The present problem is equivalent to the case of thermohaline
convection with an additional term in the diffusion equation representing the Soret effect. The nonlinear
equations with free boundary conditions are integrated numerically. Near the neutral stability curve,
the results of the linear stability theory are recovered for small perturbations, as it should be, but
finite amplitude convection is the main subject of this paper. Recent published experimental data seem
to indicate that new physical phenomena are caused by the Soret effect: essentially an hysteresis loop
was found in Schmidt-Milverton plots and oscillations were also reported when a two component system
is heated from below. This paper is an attempt to describe theoretically the experimental facts. During
the numerical integration of the nonlinear equations, we have found, in many cases, transient oscillations
in the Nusselt number. These oscillations are induced by the Soret effect, and the frequency, or the
amplitude can be related to the thermal diffusion coefficient. We give also in this paper an evidence of
finite amplitude convection, below the critical Rayleigh number (subcritical instabilities) and thus an

hysteresis loop can be described in the Nusselt-Rayleigh number plane.

NOMENCLATURE
Apq
B, (» Fourier coefficients;
Crq
D, isothermal diffusion coefficient;
D, thermal diffusion coefficient;
d, depth of the liquid layer;
g, acceleration due to gravity;
L, length of the cell;
N; mass fraction of component i;
N;*,  initial mass fraction of component i;
Nu,  Nusselt number;
n, perturbation of N;
Pr, Prandtl number:
Ra, Rayleigh number;
Rz, Rayleigh number for the concentration field;
Se, Schmidt number;
&, Soret number;
T, temperature;
, time;
T, period of oscillations;
Xi» space coordinate.
Greek symbols
, thermal expansion coefficient;
7 p H0p/ON)r;
K, thermal diffusivity;
v, kinematic viscosity;
o, density;
3, temperature perturbation;
¥, stream function.

INTRODUCTION
MEASUREMENTS of thermal diffusion coefficient (also
called the Soret coefficient; ([1] p. 273) are usually
conducted with a liquid layer bounded by two rigid
boundaries and heated from above, and thus the system
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is supposed to be in a state of mechanical equilib-
rium (convection-free). By monitoring concentration
changes, it is possible to deduce the Soret coefficient.
But measurements obtained by slightly different
methods (e.g. a Clausius column or a flow-cell method)
did not always agree with the values given by the direct
method. It is now well known [2] that an instability
of the system is responsible for the discrepancy between
the data reported in the literature. On the other hand,
it was suggested by Prof. I. Prigogine that measure-
ments of Soret coefficients could be performed by
heating the system from below. Indeed, let us suppose
that due to the Soret effect, the denser component
migrates towards the bottom (hot boundary): this is
thus a stabilizing effect and the increase of the critical
temperature gradient necessary to induce convection
should be related to the value of the Soret coefficient.
Experimental research in this direction was initiated
by Legros and coworkers [3-5], and was recently used
by Caldwell [6] in order to determine Soret coefficients
in electrolyte solutions.

Thus the Rayleigh-Bénard convection in a two-
component system has received this last decade a great
deal of attention. The first type of problems investigated
in this field is the so-called “thermohaline convection™.
In the second type of problems, a two-component
system, initially homogeneous, is subjected to an adverse
temperature gradient. Thermal diffusion takes place
and a mass fraction distribution is established in the
liquid layer. This mass fraction distribution has a pro-
found influence on the Bénard convection. Of special
interest is the possible application of this type of
problem to oceanography (study of convection currents
in liquids stratified both by temperature and salt, with
a coupling between the two diffusion phenomena) or
to crystal growth (especially alloys), from the melt,
where temperature gradients in a binary system, could
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inhibit or induce prematurely convection, with or
without oscillations.

The works of Veronis, Sani, Nield, Shirtcliffe, Baines,
Gill, Turner, Hurle, Jakeman, Bdzil, Frisch, Stern and
many others are reviewed and discussed in a recent
paper [7], where all the suitable references can be found.
We want in this paper to report results of a numerical
study of finite amplitude convection. coupled with the
Soret effect in the case of free boundaries.

Section 2 is devoted to the derivation of the non-
linear equations and to a summary of the results of
the linear theory. The numerical results are given in
Section 3. An hysteresis loop is described in Section 4.
A comparison with the few existing experimental data
is given in Section 5.

2. THE NONLINEAR EQUATIONS

In writing the nonlinear equations, we have adopted
the following assumptions, essentially the same as in
the linear theory:

1. A Boussinesq fluid.

2. The Dufour effect is neglected. This is of course
aquite reasonable assumption for liquid mixtures,
but becomes inadequate for gases (for more de-
tails, see [1] p. 279).

3. The barycentric reference frame is used.

These conservation equations are in a dimensionless

form (Z is the vertical and x the horizontal coordinate):

(a) Conservation of mass

W\ é(y, Ny)
S se
S o =58z

+ VAN + ¥V3T 1)

{b) Conservation of momentum (y: stream function)

¢, o, V) eT ON,
hl —pr—r + Ry ——
Pr ﬁrV V=P a(x, 2) Tox ax >
+Pry3 (Vi) (2)
(c) Conservation of energy
6T o, T)
= +V2T.
ﬂt c’*(z x) T 3)

The Bénard problem including thermal diffusion is
characterized by 5 dimensionless parameters. The
notation is that adopted in previous papers by Legros
and Platten (e.g. [8]).
1. The usual Rayleigh number Ra = gaATd>/xv.
2. The thermal diffusion Rayleigh number Ry, =
gyN¥d3 /v where y = p~(0p/ON1)r.
N¥: initial mass fraction of component 1
(the more dense).

3. The Soret number & = (D'/D)/AT.
D: isothermal diffusion coefficient.
D’: thermal diffusion coefficient.

4. The Prandtl number Pr = v/k.

5. The Schmidt number S¢ = v/D.

The contribution of the conduction regime (linear
concentration and temperature profiles) is usually sub-
tracted from equations (1)-(3).
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Thus we write
Ylx,z,t) = 0+yix, z, t)
Ni(x,z,8) = Ni(z2)+n(x,z,1) (4)
T(x, z,t) = T(z)+ 9(x,z, D

with T(z) = 1 —z and N1(z) = 1 + (2 —1/2).
The final equations to be integrated are

on_ fowm W ], o, v

Sc & c[@{x.z) ol ]-}-V n+ V83 (5
&, V) 9

Pré?Vt//-Pr 8(_)(,2) ﬂa

+ Ry % + PrV3(V3y) (6)

09 W, 9) alll:l
= Pr V33 7
Prae [6(x 2 x|’ @
together with the free boundary conditions
3=0for z=0and z=1
09
— =0 for x=0and x=L/d
Ox
aa o (o
I fi = =1
Eadrw (c?x) Ofor z=0 and z=
2
?—d—,- g '// =0for x=0 and x=L/d
6z ox?
62
n=F—0 for z=0and z=1
on
E=Oforx=0andx=L/d. (8)

It was found that for & > 0, the principle of exchange
of stabilities is valid and the critical Rayleigh number
is given by

Rl — 277 Pr+sc
e 4 ™ Pr -

©)

For & < 0, two cases are possible:
(i) exchange of stabilities for small | #| and equation
(9) is still valid
(ii) overstability for
27n* Pr(Pr+1)

S>>
l l 4 Rrh'S(_‘z

In that case, the critical Rayleigh number increases

more slowly and is given by
4
Ralet — 21=* (1 +SC)(SC+Pr)—Rn.~ . Pr .
Pr+1
(10)

(over) 4 S C2
Finally the dimensionless frequency is also known.

_ '—RT;, L 97[4 1/2
=1 3PrPr+ 1) 452

Typical values of the period is O (10*s) for a liquid
depth of O (1 mm). For more details, see [9].

The method of solution of equations (5)—(7) here
adopted, is the method proposed in earlier work by
Veronis [10-12] and by Foster [13]. The stream func-
tion \, the temperature 3 and mass fraction n are ex-

(11)
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panded in Fourier components with time dependent
coefficients. By substitution of this representation into
the nonlinear equations, we get in an absolutely
standard manner the time evolution of each Fourier
coefficient.

The purely algebraic part is rather long, and can be
found elsewhere [21].

The differential equations describing the time evolu-
tion of the Fourier coefficient, are integrated numeri-
cally, given a suitable set of initial conditions. This is
performed by standard numerical methods (Runge-
Kutta-Hammings). At each time step, the Nusselt
number Nu is computed. The Nusselt number is defined
as the ratio of the vertical heat flux to the conductive
heat flux. In fact we use a horizontally averaged
Nusselt number, and computed at the lower boundary
since the heat flux may vary with Z for time-dependent
motions. However we can use this definition to describe
finite amplitude motions and to deduce the period of
the oscillations. Thus

Q
Nu=1-7Y qBo, (12)
gq=1

if we use for 3 the following expansion

P Q

3= 3 Y B,,t)cos <pnix>sin(qnz). (13)
p=0¢=1 L

The numerical results to be presented, are obtained

with a truncated representation.

We have used three representations:

D)P=Q0=2;(i)P=Q=4;@{)P=0=6.

The number of Fourier coefficients to be used in
order to obtain accurate Nusselt numbers has been
discussed previously [10-12]. The results which are
physically relevant, are those which do not change in
any significant way when the truncation level in the
Fourier representation is increased. It was verified n
a few numerical experiments that the difference in the
numerical results concerning the mean value of the
Nusselt number never exceeds 19, between the rep-
resentation “P = Q = 4” and “P = Q = 6”. This is due
to the fact that we are interested in small Rayleigh
numbers, in low intensity convection (usually Ra <
2Ra’™) and thus the few first modes are sufficient.
Some results presented in this paper are obtained with
P = Q =2, mainly in order to reduce the computer
time. This produces a maximum error of 159 on the
Nusselt number. However, the aim of this paper is only
to provide a qualitative study of oscillations and of the
hysteresis loop. Moreover, accurate Nusselt numbers
for the case of two free boundaries, cannot be checked
by experiment.

Before proceeding with the numerical integration of
the differential equations for the Fourier coefficients
of the stream function y, the temperature 3 and the
mass fraction n (called respectively A, 4, Bp.q and C, ),
a suitable set of initial conditions must be specified.
The values

Apg=Bpg=Cpy=0 Vp,q

correspond to the state of rest. We want, in general,

to perturb slightly the state of rest and to follow the
time evolution of the perturbations. Therefore we have
generally adopted the following initial conditions

Apq=Cpq=0 Vp,q
|Bpol =106 for p=0,1 and g=1,2

ie. an “infinitesimal” perturbation. The contribution
of this initial perturbation to the Nusselt number
(initially equal to 1) is less than 10~ ¢! The parameters
Pr, Ry, and Sc were kept constant and equal to
Pr = 10; S¢ = 1000; Ry, = 40000. These values are of
the same order of magnitude as for water—alcohol
systems (e.g. the system 90wt %, water —10wt9 iso-
propanol studied experimentally by the authors [9]).
Finally, we have adopted L/d = 1.4, ie. one half of
the critical wavelength. We are thus studying above the
critical point one half of a Bénard cell having the same
size as at the critical point. Any other ratio length to
depth gives a lower Nusselt number. We have verified
that the results of Foster [13] concerning the effect of
the ratio L/d are unaffected by thermal diffusion.

The two remaining parameters Ra and & are varied

and

1in the subsequent numerical experiments.

Finally, we would like to mention that all the cal-
culations were done in double precision on a B5500
computer or on a CDC 6400.

3. NUMERICAL RESULTS

(a) Results near the neutral stability curve for ¥ < 0

For & = —5-1073, the critical Rayleigh number is
from equation (10): RalS), = 846.557. The first run
was performed with Ra = 860, ie. near the neutral
stability curve. At each time step (At = 1072) all the
Fourier coefficients and the Nusselt number are com-
puted.

As predicted by the linear theory the Nusselt number
increases with time (Ra > Ra“™™ = instability) and
oscillations of increasing amplitude are observed (over-
stability). The following experiments were made near
the neutral stability curve, namely

1. = —10_5 Ra = 660 crit

2 #=—10 Ra=gr0f " (Rdowr =665
3. ¥=-10"* Ra=0660

4 $=-10"* Ra= 675}‘* (Ragy;, = 668.375)
5. $=-10"* Ra=695

6. $=—-10"> Ra= 705}-’ (RaZy, = 701.103)

7. #=-510"3 Ra=860 — (Ra™™, = 846.557).

In runs (1), (3) and (5), i.e. below the critical point, the
initial small perturbations die out. On the contrary,
in runs (2), (4), (6) and (7), i.e. above the critical point,
the initial perturbations are amplified; the Nusselt
number grows with time and oscillates. The general
behaviour in view of the seven runs, is indeed the right
one. Moreover, the dimensionless period of the oscil-
lations of the Nusselt number, can be deduced from
the computer output. For example, for run (7) we have
found for the period T = 4.015. In fact the period of
oscillations of the stream function at each point is twice
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the period of oscillations of Nu. This can be easily
followed in the numerical results, The velocity com-
ponents change sign with time. The mimmum in ¥ (a
negative value, thus a maximum in [|} as well as a
maximum 1n ¥ {positive), correspond both to a maxi-
mum in the Nusselt number and this is of course easily
understood. When y passes through the value zero the
Nusselt number is nearly equal to unity. Thus from
the computer output the period of oscillations of  1s
T = 8.03. Fromequation (11). we find T = 2n/g; =8.07
and this is a surprisingly good agreement. Table 1 sum-
marizes the period of oscillations of the Nusselt number

Table 1
S Tr Ty Equation {11}
—-10°° 108.5 217 180.47
-107¢ 28.96 5§7.92 57.07
—-1073 8.97 17.94 18.05
—5-1073 4.015 8.03 8.07

Ty (column 2), of ¥, called Ty (column 3} and the
value predicted by the linear theory (equation 11).
The poor agreement at ¥ = — 107> is due to the fact
that for 0 < t < 250 we have only three maxima in
Nu to determine Ty, (¢ = 250 is the final integration
time with a time step of 107 7).

We conclude thus that the linear stability theory is
verified in these nonlinear computer experiments.

The numerical results of this section [Section 3(a)]
were obtained with P = Q = 2, and are near the neutral
stability curve in complete agreement with the linear
theory and there is thus no need to improve any more
these results using a higher representation.

(b) Results at ¥ = —10™?% and Ra = 2630 or 1800

The critical Rayleigh number is 1028.35 and the
numerical results should not be compared with the
linear theory. For the same initial perturbation, Fig. 1
shows the Nusselt number vs time for 0 <t < 40.

There is a very rapid growth of the Nusselt number,
but as soon as the Nusselt number has reached its
final mean value, oscillations start around this mean
value. The period of oscillations is ~1.5-1.6 and
cannot be compared with the value deduced from the
linear theory (T = 5.7). This is of course obvious, far
from the critical point.

In contradistinction with the numerical results of
Section 3(a) the stream function ¥ oscillates with
exactly the same period as Nu, and never changes sign.
There is thus no reversal of the velocity components
and thus the minimum of Nu during an oscillation is
never 1. The final mean value of Nu is 3.04, i.c. exactly
the same value that we have obtained in a preliminary
run (& == 0), for the usual Bénard problem, at the same
Rayleigh number. where of course no oscillations are
seen. This is not surprising as we know that, for the
case of two free boundaries, the number of convective
cells is not affected by thermal diffusion.

Beats are observed. It seems that two frequencies

33889 |-
31500 k- \ /r;\- "l"\ Ny
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12389
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FiG. 1. Time variation of the Nusselt number; Ra:2630;
Soret number is —107% In all the subsequent figures of
this type, the points (@) correspond to the computer output.
Solid and dotted lines are added by the authors. The values
of the Nusselt number on the y-axis are due to the fact that
the computer takes the minimum and the maximum value
of Nu, and divides this interval in ten parts. The figures are
thus drawn by the computer.
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F1G. 2. Time variation of the Nusselt number (10 < t < 20);
Ra=2630; ¥ = —1072,

are present. This is more evident on Fig. 2 where the
time scale is extended and the number of points twice
that of Fig. 1 for the same time interval. In fact, with
56 Fourier coeflicients, 4 coefficients contribute to the
value of Nu (Bo1, Boz, Bos, Boa). Two of them are less
amplified (Bp; and Bos) and contribute for a total
amount of less than 0.1% to the Nusselt number. In
order to save processor time, the non contributing
coefficients are usually neglected and put equal to zero
in the integration process. The two remaining coef-
ficients (Bo; and Bp4) do not oscillate each with a single
but different frequency, as we first expected but
beats are observed in each Fourier coefficient. At
Ra = 1800, the Nusselt number (approximated by
Nu=1-—2n-Boy—4 1 Boa), presents small irregu-
larities at t ~ 32, t ~ 37.5 and ¢ ~ 43.5 (see arrows in
Fig. 3) corresponding to a progressive growth of a new
peak, fully developed for large time. For the next higher
approximation{P = Q = 6), among the 120 coefficients,
60 are not amplified to a significant level {p+ ¢ odd)
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Table 2
Time interval Max. of Nu
2040 1.000 000001
40<t <60 1.000000024
60t <80 1.000000429
80 <1< 100 1.000 007804
100 < <120 1.000142033
120 < £ < 140 1.002 569826
140 <1 € 160 1.042 148 639

24899 -
24624 IT

ol |

240m | i i 1 i i i
300

S l
315 330 345 360 3I75 390 405 42.0 435 430

Time
FiG. 3. Time variation of the Nusselt number (30 < ¢ < 45);
Ra =1800; & = —10"2,

and are neglected. Three Fourier coefficients contribute
to the Nusselt number (By», Bos and Bge). The be-
haviour of Nu(t) is qualitatively the same as in Figs.
1-3, and no new features are observed. Thus we believe
really that only two frequencies are present. At the
critical point however, only one frequency is present.
We believe that the two frequencies observed at
Ra = 1800, could be called “the beginning of tur-
bulence”.

{c) Results at & = —107% and Ra = 1100

This experiment was chosen because the behaviour
of Nu for “small” time (0 < ¢ < 160} is quite similar to
that described in Section 3(a). At t ~ 200, the nonlinear
terms become sufficiently important and the behaviour
of Nu changes radically.

Figure 4 shows Nu(z) for 20 < r < 40. As predicted
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F16. 4. Growth of the initial perturbation in the Nusselt
number. Ra = 1100; & = —10~ 2,

by the linear theory, instability arises as oscillations
of increasing amplitude. The behaviour of Nu does
not change for 7 < 160. Figure 4 is reproduced for
40<1<60,60 <t <80 ¢etc..... The maximum value
of Nu during each time interval increases and is given
in Table 2. In view of the smallness of the maximum

value of Nu for t <100, the ordinate scale in Fig. 4
is correctly labelled, the variation of Nu being less
than 0.0001!

The period of oscillations of Nu is T = 2.84. Exactly
as in Section 3(a), Y changes sign and oscillates with
a period twice that of Nu. Thus T, = 5.68. The period
calculated from equation (11) is T, = 5.71, thus once
more a surprisingly good agreement. The period does
not change for <160, For t > 160, the nonlinear
terms become more and more important; the mean
value of Nu does no longer increase exponentially as
in Fig. 4, but much more slowly. At the same time,
there is a modification in the period of the oscillations.
For 250 < t < 260, the minimum value of Nu is always
of the order of 1, and exactly as for 0 <1 < 160, ¥
changes sign and passes through the value 0 when
Nu = 1. The Nusselt number is equal to 1 for the last
time at ¢ = 258. Indeed, during the next oscillation,
Nu drops only to a value close to 1.16 (at ¢ >~ 261.7).
The next minima (at ¢t = 265.8 and 269.6) are at higher
values. At the same time, the successive maxima in Nu
decrease. This is shown on Fig. 5.
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Fi1G. 5. Time variation of the Nusselt number (260 <t <
270%; Ra=1100; ¥ = — 1072

What is now remarkable, is that the stream function
does no longer change sign and now oscillates with the
same period as the Nusselt number. There is thus an
acceleration of the convective motion, followed by a
retardation of this motion, but without inversion of
the velocity components. For ¢ > 270, the amplitude
of the oscillations decreases. At r — oo the amplitude of
the oscillations reaches zero.
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For this Ra number, there exists thus three domains:
(i) r < 160: according to the linear theory, insta-
bility arises as oscillations of increasing ampli-
tude and the period is correctly predicted by
equation (11). The stream function changes sign
and Nu oscillates between 1 and a value greater
than 1.

(i) 160 < t < 260: the nonlinear terms become im-
portant, implying a modification of the period
of oscillations. The stream function still changes
sign.

(iii) ¢ > 260: the Nusselt number oscillates between
two values greater than 1 and there is no longer
a change of sign in the stream function. The
amplitude of the oscillations decreases continu-
ously and the period cannot be predicted by
equation (11), i.e. by the linear theory.

(d) Results for positive Soret numbers at Ra ~ Ra™

Different runs were performed near the neutral
stability curve. In contradistinction with the case
& < 0, the growth of the initial perturbation above the
critical point, is monotonous in accordance with the
fact that, from the lincar theory, the principle of
stability is valid.

(e) Results at ¥ = +1.2 x 10™* and Ra » Ra(y)

The first run is performed with R = 850. The critical
Rayleigh number is 172.7 and thus Ra =~ 5 x Ra},).
For 0 <t < 34 we observe a monotonous growth of
the initial perturbation according to the linear theory.
As soon as the nonlinear terms are dominant (¢t > 34)
oscillations start. This was unexpected but there is no
reason to extrapolate the principle of exchange of
stability (no oscillations in the initial growth) to the
final finite amplitude motion. The period of oscillation
is, in reduced units 4.7 and cannot be compared with
the value deduced from the linear theory.

The second run is performed with R = 2630 ~ 15 x
Rag and shows the same behaviour. This is repro-
duced on Fig. 6 for 0 <t < 10. It seems that Nu is a

29594 [—
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2 5675 —
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6 2 3 4 s

Time

F1G. 6. Time vanation of the Nusselt number (0 < ¢ < 10);
Ra=2630; ¥ = +12x10"%

]
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constant for ¢ > 6.2, but when the scale is amplified
(Fig. 7; t > 10) very regular oscillations are observed;
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F1G. 7. Time variation of the Nusselt number (10 < ¢ < 20);
Ra=12630. %= +12x10"%

moreover, the amplitude decreases slowly with time.
T, is now 1.5 in reduced units.

(f) Results at Ra = 2630 and different &
The following runs were made

1. =0 usual Bénard problem.

2. ¥ =+12x10"*

3, $=—-12x10"*

4 S=+5x10"4 far from the neutral
5. 9= -5x10"% stability curve.

6. ¥ =+10"2

7. ¥ =—10"2

8. ¥=-5x10"" - close to the neutral

stability curve.
- below the neutral
stability curve.

9. ¥=—6x10"2

In run 1, no oscillations are seen. In runs 2-7, we are
far from the neutral stability curve. Oscillations are
observed both for positive and negative Soret numbers.
The period is absolutely not predicted by the linear
theory and in the six runs is always equal to 1.5 reduced
units and thus does not depend on the Soret number.
On the contrary near the neutral stability curve the
period is given by T =+ 1/(|#)}(¥ < 0) according to
the linear stability theory. However, the amplitude is
influenced by the Soret number. We measured the
greatest value of the amplitude after time ¢ = 10. The
situation is summarized in Table 3. We see that the
amplitude is roughly proportional to |&|.

Table 3

Maximum amplitude in Nu of

¥ Tw, the oscillations for t > 10

0 0 0

+1.2x107% 1.5 0.0061
—12x107% 1.5 0.0060
+5x107* 1.5 0.0251
~5x107* 1.5 0.0256
+1072 1.5 0.4959
~1072 1.5 0.5381
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In run 8, we are “not too far” from the neutral
stability curve (the Soret number at which Ra,., =
2630 is —5.4 x 10™2, whereas for & = —5-1072 we
find Raf;i,‘e,, = 2483). Integration was performed only
for t £ 20. We do not possess the new state, but for
t < 20, the behaviour is completely identical to Fig, 4:
instability arises as oscillations of increasing ampli-
tude, with a period equal to Ty, =126 or T, = 2.52.
The period deduced from equation (11) is 2.55, thus
in complete agreement with our observation. In run 9,
we are below the critical point. The initial perturbation
decreases with oscillations, in accordance with the
overstability of the system for & < 0. The behaviour
of Nu is shown on Fig. 8. The Nusselt number reaches

1.0000 [— (\

\ Ra=2630
=-0.06

|
|

10000 | | | ] | | | ] 1 |

FiG. 8. Decay of the initial perturbation of the Nusselt
number; Ra = 2630; ¥ = —1072,

the value 1.000000 by oscillations of decreasing
amplituds.

(g) Discussion of the results of Section 3

The results that we have obtained in this paragraph
could be summarized as follows:

(i) The results of the linear stability theory are
recovered in these nonlinear computer experiments
provided that the initial perturbation is small and that
the Rayleigh number is close to the critical Rayleigh
number. Both the “principle of exchange of stability”
and “overstability” are observed in their particular
range of validity: above (below) the critical point
oscillations of increasing (decreasing) amplitude for
& < 0, but monotonous increase (decrease) in Nu for
& > 0. When oscillations are present their period is
correctly predicted by the linear theory.

(ii) Far from the critical point, transient oscillations
with more than one frequency are observed. For a
sufficiently long time, the system reaches a final steady
state, and the mean value of the Nusselt number is
exactly the same as for the usual Bénard problem.
Figure 9 shows the differences in Schmidt-Milverton
plots between a pure liquid and a liquid mixture with
a negative Soret coefficient (% < 0=>D'/D < 0). These
differences, as well as the experimental observations,
were already discussed elsewhere [9,15], but let us
recall that very regular oscillations were observed in
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F1G. 9. Schmidt-Milverton plots for pure liquids (a) and
mixtures with negative Soret coefficients (b). W is the heat
power supplied to the Bénard apparatus.

the part of the curve with a negative slope [part (c)],
i.e. below the critical temperature gradient. Far above
the critical temperature gradient, e.g. AT = AT, there
is only one state, whatever the initial conditions are,
namely point S4, and this state is probably a steady
state. Starting from the state of rest, Hurle and Jakeman
[16,17] have shown experimentally that transient
oscillations are observed when the heating power is
increased, provided that the Rayleigh number is pre-
vented to drop, and that finally the system reaches a
final steady state. This is in fact exactly what we have
observed and described in Sections 3(b) and (c).
Finally, far from the critical point, the period of
oscillations cannot be predicted by the linear theory,
but, at a given Rayleigh number, their amplitude, is
proportional to |#].

(i) Below the critical point, say AT = AT_, three
states are possible, namely S;, S, and S;. S; is the
state of rest and S, and S5 convective states below the
critical point AT®™, The very nice oscillations reported
previously [9] were observed below AT but with a
heating power W close to the critical heating power.
W, the state S, is probably a finite amplitude oscillatory
state. At a given Rayleigh number below Ra“™, the
state reached by the system will depend on the initial
conditions. This will be examined in more detail in the
next paragraph.

4. AN HYSTERESIS LOOP

Analytical calculations, related to a severe truncated
development using only five coefficients [14] show the
existence of stable steady convective states below the
critical point and allow the description of an hysteresis
loop in the Nusselt-Rayleigh plane. With this minimal
representation for the velocity, temperature and con-
centration field, analytical calculations were made in
order to find all the possible steady states. We have
shown that two stable steady states were indeed
possible below the critical point: the state of rest (say
S; on Fig. 9, part b) and a convective steady state
(interpreted as the state S5 on Fig. 9). In order to reach
this state S, special initial conditions must be specified,
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namely initial conditions corresponding to a convective
state, say Sq.

Of course, as already stated, we have to attach a
physical meaning to numerical results which do not
change in any significant way when the truncation
levelin the Fourier representation is increased. Numeri-
cal calculations, involving 16 coefficients (P = Q = 2)
will not be reproduced here, because they produce
numerical results identical to those obtained analyti-
cally, using the severe truncated development with only
five coefficients. The particular good agreement be-
tween the results obtained with five and with 16 Fourier
coefficients, is due to the fact that among the 16 coef-
ficients, those with (p+¢) odd are not amplified. More-
over, among the remaining eight coefficients which are
amplified, three are always much smaller than the five
coefficients considered in the truncated expansion.

The numerical experiments that we have performed
(with P = Q = 4) are summarized in Table 4.

J. K. PLatTeN and G CHAVEPEYER

Table 4, the mean value of the Nusselt number being
1.545. Thus the existence of an hysteresis loop is firmly
established and is by no means linked to the number of
Fourier coefficient, i.e. to a too small representation.
The situation is summarized on Fig. 10.

5. COMPARISON WITH EXPERIMENTS

First of all, we would like to emphasize that a com-
plete experimental study of the action of the Soret effect
on natural convection is missing. We have no indication
on the flow patterns in the nonlinear region, far from
the critical point, and even, we do not possess the
flow patterns near the critical point. The only experi-
mental data available today are Schmidt-Milverton
plots [3-3, 9. 16, 18, 19]. The aim of these experiments
was to verify the variation of the critical Rayleigh
number and to compare with the linear theory but
by no means to know the flow structure. There 1s even

Table 4. Hysteresis loop with 56 Fourier coefficients {% = — 107 %; RaSis, = 1028.35)

Run No. Ra Initial state {z = 0} Mean value of Nu during oscillations
1 Ra®™ 4 1000 = 2028.35 Rest 2.70
2 1800 Run(l)att =10; Nu{0Q) =252 2.55
3 1800 Rest 2.55
4 1500 Run(l)atr =10 231
5 1200 Run{l)attr =10 1.97
6 1200 Rest 1.98
7 1100 Run{latr=10 1.85
8 Ra™™ = 1028.35 Runi{ljats =30 173
9 1000 Run(5)ats = 30 1.71

10 Ra™ —50 = 978.35 Run(1)att =30 1.67
11 Ra®™ — 100 = 928.35 Run(l)at¢ =30 1.55
12 913.85 Run (1yatt =10 1.00

Let us now comment on some runs, Runs {2) and (3)
show that, beyond the critical point, there is only one
state corresponding to Nu 2 2.55, starting with the
state of rest (run 3), or with a convective state. In
col. 3 of Table 4, “Rest” means “At =0 all the
Fourier coefficients are equal to zero except the initial
perturbation given by | B, ,| = 105", whereas “Run (a)
at t = " means “At t = 0, all the Fourier coefficients
are equal to the values obtained in run number (a) at
time r = r”. In run 9, we are below the critical Rayleigh
number, and we know from the linear theory that if
we start with the state of rest, slightly perturbed. the
initial perturbation dies out and that the Nusselt num-
ber reaches the final value 1, with oscillations of
decreasing amplitude (for the general behaviour see
Fig. 8). However, if we start with an initial convective
state, even below the critical point, the system does
not return to the state of rest and the Nusselt number
reaches a final mean value of 1.71. The same experi-
ments are repeated in runs 10 and 11. From runs {(11)
and (12} we deduce that the Rayleigh number at which
finite amplitude instability may exist is 913 « Ray, <
928, thus a larger value than that obtained with 16 or
five coefficients. Nevertheless the hysteresis loop is still
present. A supplementary run with 120 coefficients at
Ra = 928.35 shows the same behaviour as run 11 of

no information on the size of the convective cells com-
pared with the case of a pure liquid. We would like
to remember that the linear theory predicts that for
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Fic. 10. Hysteresis loop in the Nusselt Rayleigh plane.

F >0,k -0 or A —s o0, where A™ is the critical
wavelength linked to the size of the convective cells.
In some sense, there would be only one convectton cell
for & > 0, occupying the whole Soret apparatus and
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this unique convection cell has no appreciable effect
on the total heat transfer. This would in some sense
explain why Schmidt-Milverton plots at % > 0 show
the same behaviour as for a pure liquid. Recently
Sparasci and Tyrell [20] have obtained an experimental
evidence for the existence of a critical limit for the
onset of very slow convective motion at & > 0, far
below that associated with the normal Bénard motion.
They used an optical system instead of simply measur-
ing an increased heat flow.

The linear theory shows that, in some cases, over-
stability prevails at the critical point. As a consequence,
the above mentioned researches have tried to detect
oscillations near the critical point, at least in the tem-
perature field, by looking at the response of a tempera-
ture probe (thermocouple, NTC resistor ...} fixed in a
given position in the liquid layer. There still exists a
controversy concerning the origin of the observed
oscillations [17, 15]. Nevertheless we believe that the
observed oscillations are really induced by thermal
diffusion and our recent paper [9] shows qualitative
agreement between experiments and theory as far as
oscillations near the critical point are concerned.
When the heating power is raised in Schmidt-Milverton
plots, the thermocouple response becomes more ir-
regular and finally oscillations seem to disappear (sec
eg Fig 2, part C and D of [9]). This could be
linked to the transient nature of the oscillations re-
ported in this paper. Referring once more to Fig. 9,
if the state S, is really a steady state and if over-
stability prevails at the critical point B it is quite
natural to observe transient oscillations (both in lab-
oratory experiments and in numerical experiments)
during the evolution of the system from the state of
rest to the convection steady state S4. On the other
hand. we were not able to reproduce in our numerical
experiments sustained oscillations above the critical
point. Let us recall that stable regular oscillations were
only observed below the critical point (state §,, Fig. 9}
and that the experiment is conducted such that, being
initially at the critical point B, one can evolve to the
same Rayleigh number (AT-) by two ways: by lower-
ing the heat power or by increasing the heat power,
and thus one can reach state §; or S, exactly as we
like. On the contrary, in numerical experiments, the
only parameter that we can vary is the Rayleigh num-
ber, and below the critical Rayleigh number the state
reached by the system (S;, Sz or §3) depends on the
initial conditions, in some sense, depends on a certain
preparation of the system. We were not able to prepare
initially the system such as to reproduce the state S,.
It seems indeed difficult to find and to prescribe to all
the Fourier coefficients the correct initial values such
that each Fourier coefficient begins to oscillate with
time.

The interpretation of the hysteresis loop described
by our computer experiments is much more easy. In
fact if the Rayleigh number is taken in numerical
experiments as the independent variable, instead of the
dependent variable as usually done in Schmidt-
Milverton plots, the part of the curve in Fig. 9 with a

negative slope (part C) cannot be reproduced by com-
puter experiments, but only parts (a) and (b). Starting
with the state of rest and, by increasing Ra, part (a)
of the curve is retraced. If Ra > Ra®™" (AT > AT*", e.g.
AT = AT,) there is a sudden jump to part (b) eg
point S, corresponding to an increase in the Nusselt
number. Now by decreasing Ra, part {b) of the curve
is retraced and even below Ra®™, stable convective
states are possible. At point C, if we further decrease
Ra, there is a new jump back to curve (a) corresponding
to Nu = 1 (state of rest). This is in fact what is described
on Fig. 10. A more qualitative comparison can be made.
Referring to Fig. 10 of this paper we find

Ra™ 102835

Ra =015 = 1.123.
From Schmidt—Milverton plots on the system water—
isopropanol (Fig. 3 of [9]) the ratio of the two tem-
perature gradients at which the system leaves the state
of rest by increasing the heat power, or returns back
to the state of rest by decreasing the heat power, ie.
the ratio of the two AT’s corresponding to point 4 and
point C of Fig. 3 of [9], is 5.45°C/4.75°C = 1.147. Com-
parison of this result with (14) shows that the order
of magnitude of the hysteresis loop is preserved, even
if in equation {14) the numerical values of the dimen-
sionless parameters {Pr, Sc,...) are not exactly those
corresponding to the experimental situation.

Finally, we believe, in order to make further progress
in this problem, that a complete experimental study is
needed. together with the solution for rigid boundaries.
However, this second part is in progress, using finite
differences.

(14)
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CONVECTION BIDIMENSIONNELLE NON LINEAIRE DE BENARD
AVEC EFFET SORET: FRONTIERES LIBRES

Résumé—On décrit une analyse numérique de la convection d’amplitude finie dans un fluide a deux
composants, en prenant en compte la diffusion thermique. Le probléme considéré est équivalent au cas
de la convection thermohaline avec un terme additionnel dans I'équation de diffusion, pour I'effet Soret.
On intégre numériquement les équations non linéaires avec des conditions de frontiére libre. Prés de la
courbe de stabilité neutre, les résultats de la théorie linéaire de la stabilité sont retrouvés pour les
petites perturbations, mais on s’intéresse principalement aux amplitudes finies. Des résultats expéri-
mentaux, récemment publiés, semblent montrer que des phénoménes nouveaux sont causées par effet
Soret: essentiellement une boucle d’hystérésis avait été trouvée dans les diagrammes Schmidt-Milverton
et des oscillations avaient été signalées lorsque le systéme binaire est chauffé par le bas. Cette étude
tente de décrire théoriquement les faits expérimentaux. Durant Pintégration numérique des équations
non linéaires, nous avons trouvé dans de nombreux cas des oscillations transitoires du nombre de
Nusselt. Ces oscillations sont induites par l'effet Soret et la fréquence, ou I'amplitude, peut étre reliée
au coefficient de diffusion thermique. On révéle I'existence d’une convection a 'amplitude finie au dessous
du nombre de Rayleigh critique (instabilités sous-critiques) et qu'une boucle d’hystérésis peut étre décrite
dans le plan des nombres de Nusselt et de Rayleigh.

NICHT-LINEARE, ZWEIDIMENSIONALE BENARD-KONVEKTION
MIT SORET-EFFEKT: FREIE GRENZEN

Zusammenfassung — Diese Arbeit beschreibt eine numerische Analyse der Konvektion endlicher Amplitude
in einem Zweikomponentenfluid unter Beriicksichtigung der Thermodiffusion. Das vorliegende Problem
entspricht dem Fall der thermohalinen Konvektion, wobei in der Diffusionsgleichung ein zusitzlicher
Therm fiir den Soret-Effekt eingefiihrt werden muf. Die nicht-linearen Gleichungen mit freien
Randbedingungen werden numerisch gelost. In der Nihe der neutralen Stabilitdtskurve wurden, wie zu
erwarten war, die Ergebnisse der linearen Stabilitdtstheorie fiir kleine Stérungen bestdtigt; das Haupt-
augenmerk dieser Arbeit liegt jedoch auf der Konvektion endlicher Amplitude. Kiirzlich veroffentlichte
Versuchsergebnisse scheinen neue, durch den Soret-Effekt hervorgerufene physikalische Phidnomene
anzudeuten: vor allem wurde 1n den Schmidt—Milverton-Darstellungen eine Hysteresisschleife entdeckt
und es wurde auch iiber Oszillationen 1n von unten beheizten Zweikomponentensystemen berichtet. Die
vorliegende Arbeit versucht, die experimentellen Befunde theoretisch zu beschreiben. Bei der numerischen
Losung der nicht-linearen Gleichungen fanden wir in vielen Fillen Ubergangsschwingungen in der
Nusselt-Zahl. Diese Schwingungen werden durch den Soret-Effekt hervorgerufen und die Frequenz bzw.
die Amplitude kann mit dem Thermodiffusionskoeffizienten in Verbindung gebracht werden. Es wird
auBerdem ein Nachweis der Konvektion endlicher Amplitude bei subkritischen Rayleigh-Zahlen
(subkritische Instabilititen) gegeben; damit kann eine Hysteresisschleife im Nusselt-Rayleigh-Diagramm
beschrieben werden.

ABYVXMEPHASA KOHBEKLIUS BEHAPA C YYETOM 3®®EKTA
COPE B HEJIMHEVIHOM ITPUBJIV)KEHUUN. CBOBOAHBIE T'PAHULIbI

Amnorauusi — [IpHBOAATCA YHCIICHHbIE Pe3yJIbTATHI MO KOHBEKUHM KOHEYHOH aMIUTHTYIbI B ABYX-
KOMIIOHEHTHOM XHAKOCTH C yueToM TepMmonuddysun. JaHnas 3ana4a aHalorn4Ha 3ajayqe i crydas
TEPMOXAJIMHHOX KOHBEKIIMH, TOJILKO B ypapHeHHe auddy3un noGapieH 4ieH, yduTeiBaroumi sddexr
Cope. Hemunetinpie ypapHeHHA cO ¢CBOGOIHBLIME I'DAHHYHBIMHE YCIIOBHAMH MHTEI PHPOBAJIMCh YHC/IEH-
HO. BOmm3u xpuBoii HeltTpanpHOMN yCTORYMBOCTH Pe3ynbTaThl THHEHHON TCOPHH ClIpaBEUTHBBHI IS
cliyyas HeOOJbIMX BO3MYINEHUM, OMHAKO, OCHOBHOE BHUMAaHHE YAE/ICHO MCCIICHOBAHAIO KOHBEKLIMH
xoHeuHoOU aMmmTyabl. Ilociaeaaue ony6mmuxoBaHHBIE JKCIIEPHMEHTAIbHBIE NAHHBIC MMOKA3bIBAIOT,
yro abdext Cope BbI3BIBacT HOBbIE (QH3HYECKHEC ABJICHHA: B YaCTHOCTH, Ha rpadmukax [Imunra-
MubBepTOHA OOHAPYXEHA NET/IA THCTEPE3HCa, a TaKxke KonebaTenbHas HeyCTOHYHBOCTL KOHBEKTHB-
HOro OBMAKEHHS IIPH HArpeBe ABYXKOMIIOHEHTHOM CHCTEMbI CHA3Y. [laHHas CTaThs ABIAETCA MONBIT-
KOIf , TEOPETHYECKOrO OINHCAHHA 3KCOCPHMEHTANBHBIX [AHHBIX. IIpH YHCIIEHHOM HHTErDHPOBAHHH
HeJIHHEHHBIX ypaBHEHMH BO MHOTMX CiIy4adx HaGmromanucr M3MEHEHMs BO BpemeHu wucna Hyc-
cenpTa. DTH M3MEHEHHMS MOTryT ObITh CBA3aHBI ¢ Ko3dduuueRToM Tepmoanddysmu. [Ipusoasarcs
TaKKe DaHHble O KOHBEKUHH KOHEYHOH aMIUIMTYOB! Ui yuclia Penes, MeHbLlle XpUTHYECKOrO (MOA-
KPMTHYECKAasA HEYCTOWYUBOCTH), H, TAKHM O00pa3oM, NETIIO FTKCTEPE3HCA MOXHO ONMCATh C TOMOLIBKO
yucen Hyccensra u Penes.



